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 *	‌� Corporate R&D Headquarters, Fuji Electric Co., Ltd.

1.	 Introduction

Digital transformation (DX) has become essential 
for corporate management in order to respond to dras-
tic changes in the corporate business environment and 
to leverage data and digital technologies to provide 
competitive advantages for products and services.  In 
addition, the recent spread of Internet of Things (IoT) 
technology has made it easier to collect a wide vari-
ety and large amount of data.  Furthermore, with the 
development of artificial intelligence (AI) technology, 
there are growing expectations for the creation of new 
customer value and the resolution of social challenges 
through the utilization of large amounts of data.  AI is 
a core technology among the digital technologies neces-
sary for companies to promote DX.  Up until now, Fuji 
Electric has solved a variety of challenges in the fields 
of industrial plants and social infrastructure through 
the development of analytics and AI.(1)

Specifically, in the field of factory automation (FA), 
we have developed a multivariate statistical process 
control (MSPC) technology for batch processes as a 
proprietary anomaly diagnosis technology.  MSPC  
meets the needs of sophisticated maintenance manage-
ment of manufacturing equipment and quality control 
of manufacturing processes and this technology has 
contributed to preventive maintenance of equipment 
and reduction of defective product rates.  In the ever-
changing field of energy supply and demand, we have 
independently improved our neural networks and 
just-in-time (JIT) prediction technologies to meet the 
demand for highly accurate predictions and are ap-
plying them to forecast future energy demand.  Fur-
thermore, we have combined these technologies with 
mathematical programming and meta-heuristic opti-
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Fuji Electric’s Analytics and AI

In recent years, companies have been accelerating their efforts to promote DX.  AI is one of the core digital tech-
nologies needed to promote DX.  Fuji Electric has developed the basic technologies of Analytics and AI, which is a 
collective term for statistical analysis and machine learning technologies used for recognition, diagnosis, prediction, 
and optimization.  For recognition technology, we developed image recognition AI using deep learning; for diagnosis 
technology, we evaluated five typical algorithms of unsupervised learning; for prediction technology, we focused on 
filter and wrapper methods; for optimization technology, we have developed a data inconsistency detection technol-
ogy that checks multiple equipment statuses simultaneously.

mization techniques to automatically plan the opera-
tion of plant equipment in order to contribute to the re-
duction of fuel costs and CO2 emissions.  We have also 
been developing “explainable AI” to address the black 
box problem of AI.  We have developed a proprietary 
structured deep learning (DL)*1 technology that visu-
alizes the correlation between input and output by us-
ing a sophisticated neural network structure, and are 
aiming to expand the application of AI to fields that re-
quire safety and reliability, where it has been difficult 
to apply AI in the past.

2.	 Overview of Analytics and AI

Fuji Electric’s analytics and AI is a collective term 
for statistical analysis and machine learning technolo-
gies that perform recognition, diagnosis, prediction, 
and optimization (see Fig. 1).  Our analytics and AI 
technology makes it possible to recognize situations in 
the production site and diagnose the cause of the inci-
dents.  In addition, it can facilitate optimization based 
on the prediction of future conditions in order to create 
new value for customers.

2.1	 Recognition technology
Our recognition technology is used to save labor 

of equipment maintenance (refer to “Text Recognition 
Technologies to Facilitate Technology Transfer and 
Information Sharing in Equipment Maintenance” on 
page 174) and automate visual inspection of products 
by applying a proprietary pre-processing technology 

*1	 Deep learning (DL):  DL stands for deep learning.  Deep 
learning is a method of learning with computers using 
multiple layers of neural networks that mimic human 
brain nerves.  It is an AI algorithm used mainly for im-
age recognition, language recognition and prediction.



FUJI ELECTRIC REVIEW vol.67 no.3 2021168

and the latest DL technology to text and image data.

2.2	 Diagnosis technology
Diagnosis technology contributes to detecting signs 

of anomalies in manufacturing processes and diagnos-
ing their causes.(1)  We use industry-proven MSPC for 
manufacturing process data whose characteristics fol-
low a normal distribution and apply a new machine 
learning technique for more complex characteristics. 

2.3	 Prediction technology
Predicting future plant conditions can help sup-

port plant operation.  We apply structured DL, capable 
of performing complex modeling for detailed plant 
operation data, to targets with large amount of data, 
whereas JIT prediction, capable of modeling even a 
small amount of data, to targets with small amount of 
data.(1)

2.4	 Optimization technology
Optimization technology is aimed at more efficient 

plant operation than human operation.  We apply 
mathematical programming when the plant has many 
equipment units, such as generators and boilers, or 

the planning period is short.  We otherwise use meta-
heuristics.(1)

In addition, Fuji Electric is developing simulation 
application technologies as model building technologies 
to achieve digital twins by combining its simulation 
technology with analytics and AI 

3.	 Introduction to Our Analytics and AI

3.1	 Recognition technology
The rapid progress of AI technology in recent years 

has enabled the application of AI technologies, includ-
ing DL technologies, to the automation of advanced 
human-based tasks that have been difficult to replace 
with conventional rule-based techniques.

In order to apply DL technologies to the indus-
trial field, Fuji Electric has been developing elemental 
technologies such as a pre-processing technology to 
cope with insufficient training data, an anomaly detec-
tion technology that is capable of learning using only 
a small amount of normal data, and a visualization 
technology for AI decisions.  Next, we will describe an 
application of our image recognition AI that uses DL 
technology to automate the visual inspection of semi-
conductor wafers in one of our factories.
(1)	 Objectives and challenges of wafer visual inspec-

tion
Fuji Electric manufactures a variety of power 

semiconductor products.  These products are manu-
factured from wafers through several processes such 
as oxidation, pattern forming, wiring, chip forming, 
and mounting and packaging.  Since various kinds of 
defects can occur in each process, visual inspections 
are conducted between processes, and images are 
taken to detect defective parts.  The images are clas-
sified and counted for each mode of anomaly, and the 
process that caused the anomaly is identified based on 
the count trends of each mode.  This type of approach 
helps improve the process (see Fig. 2).  In the past, the 
captured images were classified visually by inspectors 
in the field.  This classification process required a lot 
of time.  In addition, the classification criteria differed 
from inspector to inspector, resulting in a high degree 

AI

Feedback to the process corresponding to the anomaly mode

Captured images Image recognition AI

Anomaly B

Anomaly C

Anomaly A

Lot

Threshold

Quantity

Wafer

Manufacturing process 1

Manufacturing process 2

Manufacturing process 3

Visual inspection in between processes

Manufacturing process 4

Manufacturing process 5

Final inspection

Fig.2  Application of image recognition AI to wafer visual inspection
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Fig.1  Overview of Fuji Electric’s analytics and AI
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of dependency on inspector skills.  It is against this 
backdrop that we applied image recognition AI to the 
classification of captured images to save labor, improve 
throughput, and eliminate the dependence on inspector 
skills in the classification and counting process.
(2)	 Visualization of classification results

After pre-processing the captured images as neces-
sary by performing white balance correction, bright-
ness normalization, and data augmentation, the image 
recognition AI classifies the images by anomaly mode 
and visualizes the results.  Figure 3 shows an example 
of visualizing the classification results.  Figure 3(a) is 
a graph plotting the number of images taken of each 
wafer in which an anomaly was found for each lot.  
This makes it possible to check which lot has the most 
wafers with anomalies.  Figure 3(b) is an example of 
visualizing where each anomaly occurs within the wa-
fer surface.  This makes it possible to check whether 
the anomaly occurs uniformly within the surface or 
whether it is concentrated in a specific location.  This 
approach makes it possible to analyze the tendency of 
anomaly occurrences from various perspectives and to 
identify manufacturing processes that need to be im-
proved.

In the future, we plan to use this system to de-
velop detection and adaptation technologies for concept 
drift*2, which has been an ongoing challenge of analyt-
ics and AI.

3.2	 Diagnostic technology
AI-based diagnosis of anomalies in manufacturing 

processes has contributed to quality improvement and 
yield improvement.  Fuji Electric has a lot of experi-
ence with MSPC, especially in the field of chemical pro-
cesses.  We have also developed machine learning that 
can accurately diagnose objects with complex charac-
teristics, as well as functions that explain the basis for 

diagnosis.(1)

To diagnose complex characteristics, it is necessary 
to select an appropriate method using a performance 
evaluation technique for various applicable targets.  
Since the occurrence of anomalies is not so common in 
actual manufacturing processes, Fuji Electric is focus-
ing on unsupervised learning, which does not require 
anomaly data during training.  In this respect, we are 
experimenting with various techniques.

In this section, we will describe the results of eval-
uating the following five typical unsupervised learning 
algorithms: 

(a)	 One class support vector machine (OCSVM):  
Diagnosis using a non-linear function called a 
kernel

(b)	 Isolation forest (IF): Diagnosis based on if-then 
rules, called decision trees

(c)	 Local outlier factor (LOF): Diagnosis based on 
distance from normal data

(d)	 Isolation using nearest neighbor ensembles 
(iNEE ): Diagnosis by combining IF and LOF

(e)	 Ensemble K-nearest neighbor algorithm  
(EnsKnn): Diagnosis from multiple types of sim-
ilar data

In this study, we prepared 10 sets of real data as 
benchmark data.  It was time series data including 
power, temperature, and pressure, measured mainly in 
manufacturing processes.  We built a diagnostic model 
by training it on the data during a normal period and 
verified whether the model could be used to diagnose 
normal or anomaly data during the period of verifica-
tion.  Figure 4 shows a comparison of the diagnostic 
performance, called the F1 score, of different machine 
learning methods.  The F1 score is the harmonic mean 
of the precision (the rate of correct judgments among 
those judged to be positive) and the recall (the rate 
of correct judgments among those actually positive), 
where the closer the score is to 1, the better the diag-
nostic performance.  The algorithm with the best diag-
nostic performance was, for example, LOF for dataset 
D01 and EnsKnn for dataset D02 among the results 
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Fig.4  Comparison of diagnostic performance using machine 
learning techniques

*2	‌� Concept drift: A change in the statistical properties of a 
target variable that an AI model is trying to predict over 
time due to various reasons.
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on the change in prediction error.
In order to verify the effectiveness of each tech-

nique, we prepared benchmark data for the task of pre-
dicting temperature several hours ahead of a manufac-
turing process.  The candidate input variables consist 
of all 429 types of measured data.  We used the partial 
least squares (PLS) regression as the prediction tech-
nique because it makes it easy to handle many input 
variables.

Table 1 shows the prediction results.  Both the fil-
ter and wrapper methods were able to reduce the mean 
error using only a few input variables compared to 
methods without variable selection.  Furthermore, the 
wrapper method had a smaller mean error than the fil-
ter method.

In the future, we plan to apply this variable selec-
tion technology to actual products such as plant pre-
diction support services and also to learning tools for 
anomaly diagnosis.

3.4	 Optimization technology
The optimization technology that has been con-

ventionally applied to energy management systems 
(EMSs) creates plant models of utility equipment in 
plants and buildings and seeks optimal equipment 
operations (optimal combinations) that minimize fuel 
costs and CO2 emissions.  Based on the optimal solu-
tion obtained, it provides guidance to operators and au-
tomatically controls the utility equipment.

To obtain the optimal operation of the plant, the 
plant model is first formulated as a mixed integer pro-
gramming problem.  In addition to this, it is necessary 
to provide various input and constraint conditions to 
facilitate prediction function demand forecasting, op-

in Fig. 4.  The best algorithm differed for each data-
set.  Figure 5 shows a graph comparing the diagnosis 
time for each machine learning technique.  LOF and  
EnsKnn had high diagnostic performance but required 
a long diagnostic time.

Based on the results of this study, we confirmed 
that the best algorithm differed for each data set and 
that the diagnostic time varied depending on the al-
gorithm.  Using the F1 score and diagnostic time, it is 
possible to select the appropriate algorithm according 
to the required specifications of the diagnostic target.  
We are also planning to incorporate these algorithms 
into tools that can be easily handled by engineers and 
data scientists alike.

3.3	 Prediction technology
Fuji Electric is developing technologies to predict 

energy demand and quality in order to support plant 
operations.  We have developed some unique predic-
tion models, such as a JIT prediction, which can make 
predictions using small amounts of training data, and 
a structured DL model, which is capable of explaining 
prediction results.  In addition to the development of 
these prediction models themselves, it is important to 
know which input variables to choose in order to gen-
erate accurate prediction models.  Normally, the selec-
tion of input variables requires several days or months 
of consideration, as the data scientist repeats trial and 
error to gain knowledge of the prediction target.  We 
have developed some techniques to improve this.  For 
example, for JIT prediction(1), we developed a propri-
etary variable selection technique that uses variable 
importance to reduce trial and error time.

In addition, we have focused on the filter method 
and the wrapper method, which are general-purpose 
variable selection methods that can be applied to vari-
ous types of machine learning applications (see Fig. 
6).  The filter method can use input variables each of 
which the importance is above a certain value.  The 
wrapper method looks for the combination of input 
variables with the highest prediction accuracy based 
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Fig.5  Comparison of diagnosis time using machine learning 
techniques
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Fig.6  Conceptual diagram of the filter and wrapper methods

Table 1  �Variation of prediction error according to variable 
selection method

Number of input  
variables Mean prediction error

No variable  
selection 429 4.4%

Filter method   23 3.7%

Wrapper method   61 3.1%
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ble, it determines that the invalid constraint condition 
was the cause of the anomaly.
(2)	 Equipment-to-equipment constraint check

If there are constraint violations among multiple 
pieces of equipment, it might not be possible for it to 
make a decision by checking the constraint conditions 
for each piece of equipment as described above.  For 
example, assuming that there is a supply and demand 
relationship (supply and demand constraint) for energy 
where the output of equipment A and B is the input of 
equipment C, as shown in Fig. 9.  For example, if stop 
instructions are given to equipment A and B, and out-
put instructions are given to equipment C, checking 
equipment A, equipment B, and equipment C individu-
ally will not violate the constraints in their respective 
equipment plans, but the plant as a whole will violate 
the constraints, resulting in abnormal termination.  
This is a case in which something that appears to be 
normal at first glance becomes abnormal when equip-
ment are combined into an energy network model.   

erator operation planning, and equipment character-
istics.  After satisfying these conditions, it obtains the 
optimal solution using mathematical programming.  In 
the case of large-scale power systems or power systems 
that contain models that cannot be formulated math-
ematically, it applies meta-heuristics such as particle 
swarm optimization (PSO) to find the optimal solution.

During optimization calculations, if there are in-
consistencies in the input conditions or if they are 
accidentally not set, the constraints will be violated 
and the calculation will terminate abnormally.  In the 
event that the calculations terminate normally, it may 
still be the case that the calculation results contain 
abnormalities, such as overestimation of the energy-
saving effect.  When this happens, a system engineer 
needs to examine all the input conditions carefully to 
find out where the error occurred.  In addition, since 
errors are not limited to a single location, it is neces-
sary for the engineer to check the results repeatedly, 
increasing labor-hours even more (see Fig. 7).

Therefore, we have solved this problem by auto-
matically identifying inconsistent data and indicat-
ing where to correct the data when there is abnormal 
termination to the calculation or an abnormal result 
in the calculation (see Fig. 8).  Furthermore, we have 
implemented the following measures to identify which 
constraint conditions resulted in no solution, enabling 
the cause of the abnormal termination to be under-
stood more easily: 
(1)	 Equipment-specific constraint checks

When optimizing equipment with various con-
straints such as upper and lower fuel input limits and 
upper and lower output limits, abnormal termination 
will occur if the settings are such that calculations can-
not be performed, such as when settings for operation 
plans exceed the upper and lower limits or when the 
upper and lower limits are set to be reversed wrongly.  
When abnormally terminated, it switches between 
valid and invalid constraint conditions and performs 
recalculation, and when the calculation becomes possi-
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　from results
○Conduct analysis if any anomaly is found
○Search for abnormalities and correct the model
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Fig.7  Conventional engineering
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This means that it becomes difficult to detect the 
anomalies by just checking the usual numerical val-
ues.  To solve this problem, we have developed and are 
using a data inconsistency detection technology that 
searches for abnormal supply and demand constraints 
by analyzing the energy network model and switch-
ing between valid and invalid supply and demand 
constraints, while also checking the status of multiple 
pieces of equipment simultaneously.

In the past, it was necessary to be familiar with 
energy network models and optimization techniques 
in order to find the cause of abnormal termination 
when simulations were performed for equipment re-
placement or configuration changes.  However, this 
data inconsistency detection technology will shorten 
engineering data analysis processes and support user 
maintenance tasks, without requiring any specialized 
knowledge.

3.5	‌� Simulation technology for realizing digital twins
A digital twin is a technology that reproduces the 

functions and operations of real equipment and prod-
ucts in digital space, and links them in real time with 
operational data in real space.  By using a digital twin, 
the present and future operating conditions of equip-
ment and products can be grasped in real time, en-
abling the creation of customer value such as reduced 
maintenance costs through preventive maintenance of 
equipment and energy saving by maintaining optimal 
operating conditions.

Fuji Electric has been developing simulation tech-
nology focusing on structural design.  By integrating 
analytics and AI into the simulation of physical behav-
ior under various control and environmental conditions 
performed on digital devices, we can expect to improve 
the efficiency of the product life cycle, including not 
only product design but also testing and maintenance, 
and even apply it to the realization of digital twins.

In this section, we will discuss simulation technolo-
gies for the realization of digital twins, such as param-
eter identification technology to improve the accuracy 
of simulations, and surrogate model conversion tech-
nology to enable conventional simulations to be per-
formed more quickly and in real time.
(1)	 Parameter identification technology

Depending on the design information, the simula-
tion includes groups of parameters whose values are 
known (e.g. dimensions) and groups of parameters 
whose values are unknown (e.g. degradation state).  In 
particular, the groups of parameters whose values are 
unknown are one of the factors that reduce the accu-
racy of the simulation of real phenomena.

Therefore, we developed a technology that applies 
our AI based optimization technology to identify those 
parameter groups for optimal values.  The accuracy of 
the simulation was improved by identifying groups of 
parameters that minimize the error between the simu-
lation output results and the actual system’s collected 

data.
(2)	 Surrogate model conversion technology

Simulations can take a long time because of the 
huge amount of calculations that must be performed.  
This means that it was not possible to satisfy the 
stable real-time performance required for testing and 
maintenance applications (i.e., performance that al-
ways finishes calculation within a predetermined time, 
which is generally 5 seconds).

Therefore, by applying machine learning and op-
timization techniques, we developed a technology to 
convert a model into a surrogate model that completes 
calculations in less time than normal simulations.

Figure 10 shows the structure of the surrogate 
model described above.  The surrogate model consists 
of a learning model for the steady-state characteristics 
and a calculation component for the transient charac-
teristics.  The learning model is generated using ma-
chine learning such as DL after creating training data 
by running the simulation input parameters (such as 
environmental factors and control manipulated vari-
able) under multiple conditions to obtain output re-
sults (such as temperature sensor values).  The tran-
sient characteristics calculation component consists of 
an equation with parameters such as time constants.  
The optimization technique determines the optimal 
values of those parameters so that the error between 
the model output and actual data is minimized.

The surrogate model enabled the simulation to be 
sped up (computation time: within 1 second), instead 
of the previously slow and unstable time (computation 
time: 10 seconds to 5 minutes).

Next, as an application example of this technology, 
we will show a HILS*3 configuration, as a simulation 
that aims to efficiently verify showcase controller op-
eration without actually installing a showcase.

Figure 11 shows the configuration of the HILS for 
the showcase.  First, we generated a surrogate model 
that predicts the sensor values at various locations, 
such as the temperature inside the showcase, and in-
stalled it on a PC as a virtual device.  We were able to 
verify the operation of the control microcomputer by 
connecting the PC to it.  This not only eliminated the 

Input conditions

○Environmental 
　factors
○Control 
　manipulated 
　variable etc.
　

Output results
　

○Temperature 
　sensor values
○Pressure sensor 
　values  etc.

Surrogate model

Learning 
model

Transient 
characteristics 
calculation unit

Fig.10  Surrogate model configuration

*3	� HILS: HILS, which stands for hardware in the loop 
simulation, is a simulator for verification that reproduces 
the behavior of controlled objectives on PC.
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ditions.  This innovation will enable faster develop-
ment of showcases with even greater energy-saving 
performance and showcases that use environmentally 
friendly refrigerants.

4. Postscript

In this paper, we discussed the analytics and AI 
that are at the core of Fuji Electric’s DX.

In order to expand the application of analytics and 
AI, it is necessary to enhance the elemental technolo-
gies in each process of AI development, such as con-
ceptualization, proof of concept (PoC), implementation, 
and operation.

Moving forward, Fuji Electric will continue to con-
tribute to the creation of new customer value and the 
resolution of social challenges by accelerating the de-
velopment of elemental technologies for analytics and 
AI and realizing digital twins.
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need for testing using actual equipment and environ-
ments, which used to require large costs and labor-
hours to build an environmental test lab and to switch 
test conditions, but also made it possible to reproduce 
all seasonal conditions, such as those of summer and 
winter, as well as various operating and failure con-
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Fig.11  Confi guration of HILS for showcases
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